In the Name of God

Transcranial Direct Current Stimulation In Neurologic Conditions

, Pt, Ph.D., Assistant Professor, Fatemeh Rahimi, Shahrekord University of Medical Sciences

Reference Books

Practical Guide to Transcranial Direct Current Stimulation

Principles, Procedures and Applications

Helena Knotkova Michael A. Nitsche Marom Bikson Adam J. Woods Editors

بحديث فراجمجمه ای جريان مستقر نويسنده : حمزه بهارلوئي دانشجوي دكتراي تغممي فيزيوترايي با مقدمه دكتر محمدتقى جغتابى رئيس انجين علوم اعصاب إيران

Review

The nervous system includes **central system**(the brain, spinal cord) and **peripheral system**(complex network of nerves: cranial nerves and spinal nerves)

Diencephalon

The central portion of the brain located around the third ventricle, superior \succ to the brainstem, and inferior to the corpus callosum and cerebral cortex.

It is divided into four main parts including: \succ

thalamus, hypothalamus, epithalamus, and subthalamus.

Corpus Callosum

The corpus callosum is a large bundle of more than 200 million myelinated nerve fibers that connect the two brain hemispheres, permitting communication between the right and left sides of the brain

Hippocampus

Hippocampus is a complex brain structure embedded deep into temporal lobe. It has a major role in learning and memory. It is a plastic and vulnerable structure that gets damaged by a variety of stimuli.

Amygdala

The integrative center for emotions, emotional behavior, and motivation.

Cingulate Cortex

- The cingulate cortex is a fascinating area of the human brain that has attracted a lot of recent attention. It resides within the medial surface of the cerebral hemisphere and is perhaps most well known as being part of the limbic system.
 - The anterior cingulate cortex (ACC) is the frontal part of the cingulate \Box cortex that resembles a "collar" surrounding the frontal part of the corpus

Cerebral Lobes

The two hemispheres connected by the corpus callosum. Each of the hemispheres has been divided into four lobes: frontal, parietal, temporal and occipital

Cortex Areas

History

New old technique \Box

Torpedo fish to treat pain and headache, Plato and Aristotle \Box

Avicenna (980–1037)

Epilepsy, demonic possessions, headaches, and even gout for over 10 centuries \Box

1960s and 1970s, the treatment of some psychiatric disorders was investigated using brain polarization

Electrosleep therapy (1950s) \Box

Brain Polarization (1970s)

transcranial Direct Current Stimulation

History

Reappraisal in 1998–2000 ≻

Electric currents applied over the motor cortex \checkmark induced changes in human brain excitability

has attracted considerable tDCS has been increasingly investigated and > attention in both basic and clinical research settings

Noninvasive Brain Stimulation

Transcranial magnetic stimulation \clubsuit

Transcranial electrical stimulation \Leftrightarrow

Transcranial ultrasound stimulation ~~

Transcranial Electrical Stimulation

tDCS Implication

- Neuropsychiatric disorders \checkmark
 - Neurological disorders \checkmark
- Modulation of autonomic nervous system \checkmark
 - Appetite ✓
 - Energy expenditure \checkmark
 - Motor performance \checkmark
 - Motor learning \checkmark

tDCS Implications

Treatment

- Neurological disorders i.e. Stroke
 - Psychological disorders i.e. Depression
 - Pain relief •
 - Treatment of drug addicts
- Language disorders i,.e aphasia

Boosting

Learning •

Memory •

- Cognition •
- Mental practice •

Investigatory

- Optimum stimulation parameters
- Understanding brain function

Mechanism

Subthreshold shift of resting membrane potentials towards depolarization or hyperpolarization:

Anodal tDCS \uparrow >

Anodal tDCS vs. Cathodal tDCS

- Anodal tDCS: ↓ local concentrations of the inhibitory neurotransmitter □ gamma-aminobutyric acid (GABA)
 - Learning and performance improvements \Box
 - Allow for the induction of activity-dependent long- term potentiation \Box
 - N-methyl-D-aspartate (NMDA) receptors
 - Brain-derived neurotrophic factor (BDNF)
 - **Cathodal tDCS**: \downarrow excitatory glutamate levels \Box

tDCS Effects

Immediate effects: *

- modulation of sodium and calcium channels
 - intracellular calcium concentrations
- Long lasting effects: N-methyl-D-aspartate receptor dependent * neuroplasticity

Hebbian Theory

Neurons that fire together, wire together

- If presynaptic and postsynaptic neurons are both active, the result is synaptic strengthening
 - If one or both are inactive synaptic weakening occurs \succ

Inter-regional Effects of tDCS

Premotor anodal tDCS enhances intracortical facilitation of M1, most probably due to the activation of premotor-primary motor cortex afferents

Combined dorsal premotor and supplementary motor area stimulation alters motor and somatosensory evoked potentials

Effect on Non-neuronal tissues

- In patients with cerebral diseases, besides neuronal damage, other important pathological processes may exist in the axonal microenvironment, such as inflammation
 - Neuroinflammatory Diseases: Multiple Sclerosis
 - Neuropsychiatric Conditions: Alzheimer's Disease 🕨
 - DC fields can enhance axonal regeneration and neurite outgrowth \succ
 - Modulate oxygen supply to cortical and subcortical areas \succ

Neurophysiological Mechanisms

Influencing excitability: responsiveness to synaptic input $\hfill \Box$

- Modulating the firing rate of individual neurons \Box
- Change in information processing by cells and networks \Box

Rationale for Clinical Applications

- Re-adjust or re-balance the system \clubsuit
- Cortical activity/excitability for learning and memory formation
 - Hebbian Theory: "neurons that fire together, wire together" �

Alternating Factors of tDCS Effects

- Polarity >
- Duration \succ
- Current intensity \succ
 - Current density \succ
- Stimulation/return electrode locations \succ
 - Underlying pathology/state >
 - Co-administered drugs/treatments ≻

tDCS Protocols and Effects

- Usually applied via conductive rubber or metal electrodes \checkmark
- Embedded in a sponge soaked with saline or conductive gel or cream \checkmark
 - Stimulator delivering constant current \checkmark

tDCS Protocols and Effects

- Up to 20-min stimulation duration in most studies \succ
- Slight itching sensation at the beginning, which normally fades with time \succ
- Ramping up and down of current intensity for 8–30 s at both the start and end of stimulation
 - Retinal phosphenes due to the tenfold higher sensitivity of the retina compared to the brain to electrical stimulation

Current Intensity/Density

- 0.5–4 mA ≻
- 0.03–0.06 mA/cm2 ≻
- Increasing current density might increase efficacy \succ
 - Larger membrane polarization shift \blacktriangleright
 - Affect additional neuronal populations

Current Intensity/Density

- Target tissue ≻
- Skull thickness \succ
- Size of the head \geq
- Changes in brain tissue due to aging, injury or disease \succ
 - Interelectrode distance \succ
 - Sponge thickness \succ

Intensity

The influence of tDCS intensity on decision- making training and transfer outcomes:

- prefrontal anodal tDCS \checkmark
 - 0.7, 1.0, or 2.0 mA \checkmark
- only one of the doses (1.0 mA) leading to training transfer \checkmark

Electrode Size

- 35 cm2 ✓
- Nonfocal effects of the underlying cortex \checkmark
- Focality can be enhanced by reducing electrode size \checkmark
 - Increasing the size of the return electrode \checkmark

Rahimi Fatemeh, PT, PhD

Electrode Size

The effect of transcranial direct current stimulation (tdcs) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions:

- $(1 \text{ ma}, 2 \text{ ma}) / (16 \text{ cm}2, 35 \text{ cm}2) \checkmark$
- 2 ma tdcs does not necessarily produce larger effects than 1 ma \checkmark
- There were greater increases in excitability with the 35 cm(2) electrodes \checkmark

Stimulation Duration

- Determines the occurrence and length of after effects of DC stimulation 4 s: acute effects without generating after effects
 - More than 3 min: necessary to induce cortical excitability and activity alterations, which outlast stimulation
- 3 to 7 min: polarity-specific excitability alterations for some minutes after ✓ the end of stimulation
- Non-linear relationship between stimulation duration, and duration of after ✓ effects anodal tDCS for 26 min results in excitability-diminishing intraneuronal calcium overflow

Consolidation

Temporal summation □ Spatial summation □

Electrode Position

Reference electrode:

Shoulder, Contralateral supraorbital, Buccinators muscle → At least 7 cm →

Too low inter-electrode distance \rightarrow shunting of current flow between electrodes via the skin

Electrode Position

M1: C3- C4✓

S1: CP3-CP4 (1 cm posterior to C3 or C4) \checkmark

tDCS on Motor Cortex

- Motor learning: precision, speed, strength, endurance and execution of daily motor tasks
 - Priming *

Dorsolateral Prefrontal Cortex

- Thalamus 🗲
- Parts of basal ganglia (caudate nucleus) >
 - Hippocampus >

- Motor function \clubsuit
- Control of balance $\, \bigstar \,$
- Intentional voluntary movement $\, \bigstar \,$
 - Emotional processes \clubsuit

- Rich inherited plasticity mechanisms \clubsuit
 - Dense connections to cortical areas \clubsuit
- Evidence of successful non-invasive modulation of cerebellar function in humans ~~

HD-tDCS

- High-definition- HD-tDCS ↔
- Smaller electrodes (5 cm2) \clubsuit
 - Two or more electrodes \clubsuit
- Higher number of electrodes and/or electrodes in closer proximity
 - Increased flexibility in montage design \clubsuit
 - Facilitates simultaneous recording of EEG during HD-tDCS �

Increase brain modulat

Safety and Tolerability

- Tolerability: presence of uncomfortable and unintended effects, which do not however induce structural or functional damage tingling, itching
 - Safety: damaging effects \succ
- Adverse effect: death, life-threatening condition, hospitalization, disability or permanent damage, congenital anomaly, need of an intervention to prevent permanent impairment or damage

All side effects were:

- Mild >
- Short-lived \succ
- Well-tolerated \succ
- Not different between active and sham stimulation \succ

Rahimi Fatemeh, PT, PhD

Skin Reddening

- The intensity varies in patients \succ
- Most of them experience only mild redness whereas a few others might have more intense skin reddening
 - Direct effects of the current on the skin \succ
 - Physical pressure of the electrode pad, which must be strapped firmly against the skin

Skin Reddening

- More prominent over the anode than the cathode, although it was mild in both conditions
 - Short-lived, lasting less than 18–24 min \Box
 - Less intense in subjects with darker skin color \Box
 - Not influenced by gender, age, and smoking habits \Box

Safety

- No serious adverse effects, according to the FDA literature, regarding ✓ tDCS have been reported in any tDCS clinical study performed
 - Safety studies revealed that tDCS: \checkmark
 - Not change heart rate variability at rest \succ
 - Not increase the serum levels of neuronspecific enolase, a brain enzyme associated with neuronal death

Skin Lesions

- Skin damage has been occasionally reported \succ
- It is unclear whether this adverse effect is more common under anode or cathode \succ
 - Tap water-soaked sponges \succ
 - High impedance \succ

Skin Lesions

- Screening patients for skin diseases \succ
 - Checking the skin site for lesions \succ
 - Avoid abrasion of the skin \succ
- Ask patients to report during stimulation whether tDCS induced pain \geq

Contraindications

- Not be placed directly above areas of impaired skin, areas with chronic skin diseases
- Not be applied directly over areas with implanted metallic plates \clubsuit

Caution

- Neurological or psychiatric conditions ©
- Traumatic brain injury with loss of consciousness \odot
 - Brain surgery 😳
 - Seizures ©
 - Alcohol or substance abuse \odot
 - Use of psychopharmacological drugs \odot
 - Children 😳
 - Pregnancy ③

Safe Dosage

- Not more than twice daily \checkmark
- Not more than 40 min per session \checkmark
- In humans burns occur at relatively high current densities of 1.3 ✓ mA/cm2
- Animal experiments demonstrate that brain tissue damage could occur at ✓ current densities over 14.29 mA/cm2

tDCS stimulation procedure

- Screen for Skin disease .1
 - Not in skin damage .2
 - Skin lightly clean .3
 - Firm contact .4
 - Check impedance .5
 - Report sensation .6
- After 2 min checked for pain .7
- After tDCS check for redness .8

Clinical Applications of tDCS

Pain

- An unpleasant sensory and emotional experience associated with actual or v potential tissue damage
 - Maladaptive neuroplasticity \checkmark
 - Perpetuating the sensation of chronic pain in the presence of central \checkmark sensitization

Pain

Pain is a disabling symptom common to several pathologies and it is considered the primary reason that leads individuals to seek medical care

Pain dimensions \succ

Pain

- Chronic pain \rightarrow sensitization in the response of the pain system to noxious or \checkmark innocuous stimuli
- Peripheral level: local hormones or inflammatory mediators can heighten the ✓ response of nociceptors to lower levels of sensory stimulation
 - Spinal cord: long-term potentiation (similar to formation of memories in brain)
- Brain: Neurons in the nociceptive amygdala and in the anterior cingulate cortex \checkmark

Peripheral Sensitization

Increased responsiveness and reduced threshold of nociceptive neurons in the periphery to the stimulation of their receptive fields.

Central sensitization

- Increased responsiveness of nociceptors in the central nervous system to either * normal or sub-threshold afferent input resulting in:
 - Hypersensitivity to stimuli. *
 - Responsiveness to non-noxious stimuli.
 - Increased pain response evoked by stimuli outside the area of injury, an * expanded receptive field.

Changes in the mu-opioid neurotransmission induced by M1 tDCS have been documented in both healthy subjects and in a case report of chronic pain

- Modulation of the threshold for activation of central structures associated with pain processing
 - Activation of descending inhibitory pathways \succ

Neuropathic Pain

- Fibromyalgia 💠
- Pain due to traumatic spinal cord injury \clubsuit
 - Chronic pelvic pain \clubsuit
 - Refractory orofacial pain 🛠
 - Post-herpetic neuralgia 🛠
 - Painful diabetic polyneuropathy \clubsuit
- Chronic neuropathic pain following burn injury \clubsuit
 - Trigeminal neuralgia 🚸
 - Low back pain 🔹
 - Chronic temporomandibular disorders \clubsuit

Pain Montage

M1-SO �

- Anode: primary motor cortex (M1) •
- Cathode: contralateral supra-orbital

$DLPFC \Leftrightarrow$

Both electrodes positioned over the DLPFC (Lt anodal)

Cz- $Oz \Leftrightarrow$

- Anode: vertex
- Cathode: occipital cortex
 - S1-SO �
- Anode: primary sensory cortex (S1) •
- Cathode: contralateral supra-orbital

Neuropathic Pains

- Pain caused by a lesion or disease of the somatosensory nervous system \clubsuit
 - An umbrella term that encompasses distinct disorders \clubsuit
 - Trigeminal and post-herpetic neuralgias \clubsuit
 - Painful diabetic polyneuropathy \clubsuit

Fibromyalgia

- 2–8 % of the general population \succ
- Tenderness and chronic spontaneous widespread pain \succ
- Recent diagnostic criteria do not require counting the number of tender > points. Instead, it is entirely based on patient's symptoms

History

- Irritable bowel syndrome \succ
 - Headache 🗲
- Temporomandibular joint dysfunction \succ

Fibromyalgia tDCS

1Level B (probable efficacy):a-tDCS of the left M ✓
58% and 14% Mean reduction of pain intensity: ✓
months2 or 1Remained statistically significant up to ✓
Improvement in the quality of life in most tDCS studies ✓

Fibromyalgia tDCS

Motor cortex: pressure pain threshold, catastrophizing and quality of life \Box

Dorsolateral prefrontal cortex: fatigue

Anodal stimulation of Lt DLPFC •

Migraine

- Global prevalence: 14.7% ≻
- A primary headache disorder with repeated episodic flare up lasting 4– 72 hours
 - Characteristic:
- Moderate to severe head pain intensity \checkmark
 - unilateral location \checkmark
 - throbbing/pulsating pain quality \checkmark
 - Associated with photophobia, nausea, vomiting

tDCS & Migraine

- Pain intensity *
- Number of migraine attacks per month \clubsuit
 - Both anodal and cathodal stimulation \clubsuit
 - Daily or near-daily *
 - 15 to 20 minutes \clubsuit
 - Treatment length: 4-6 weeks �
 - Follow-up duration: 4-16 weeks 🛠

Myofascial pain syndrome(MPS)

- Pain referred from active myofascial trigger points with associated ✓ dysfunction
- Pathophysiology: mechanical overload or mechanical trauma increase fiber ✓ tension → taut bands, increased muscle tension, restricted ROM
- Perpetuating factors, such as ongoing micro- and macro-trauma from over ✓ exertion, poor body mechanics and psychological stress

MPS & tDCS

:Pain reduction in MPS by anodal tDCS combined with standard treatment minutes20 for 1 mA anodal tDCS over M1 consecutive days of 5 \circ

(active stretching exercises (Travell and Simons' procedure \circ

combined with standard treatment appears to reduce 1 Anodal tDCS over M \checkmark pain intensity and may improve PROM, faster than standard treatment alone

Postoperative Acute Pain

Preoperative transcranial direct current stimulation: exploration of a novel strategy

:to enhance neuroplasticity before surgery to control postoperative pain

- at night and in the 1 minutes each) of anodal a-tDCS or s-tDCS on the M20 Two sessions (morning before the surgery
 - Lower scores on VAS at rest and during walking \Box
 - 73.25% Analgesic doses in \Box
 - Disability related to pain \Box

Postoperative Acute Pain

- M1 anodal tDCS reduced patient-controlled analgesia \succ
 - M1 electrode location varied by type of surgery \succ
- tDCS pre- rather than post-operatively \rightarrow decrease in post-hallux valgus surgery PCA use (72.3%) and pain

Total Knee Arthroplasty

Role of tDCS on reduction of postsurgical opioid consumption and pain in total knee arthroplasty:

2 mA, 20 min, M1 anodal stimulation, postoperative for 4 consecutive days

Low Back Pain

The effects of tDCS combined with group exercise treatment in subjects with chronic low back pain:

- sessions of group exercise10 sessions of brain stimulation followed by 5 \checkmark
 - pain intensity \checkmark

- Reduction of intra-abdominal pain through transcranial direct current ostimulation
 - pelvic pain, visceral pain, o

Other Applications

- RSDS •
- Phantom pain •
- Trigeminal neuralgia •
- Cervicogenic headache

Stroke

- Rapidly developing signs of focal or global disturbance of cerebral function \circ
 - Lasting more than 24 h o
 - Leading to death \circ
 - With no apparent cause other than that of vascular origin \circ

Kahimi Fatemen.P

Symptoms

- Aphasia .7
- Dysarthria .8
- Central pain .9
- Shoulder pain .10
 - Depression .11
- Cognitive problems .12
- Behavioral problems .13

Motor weakness .1

Apraxia .3

Spasticity .4

Sensory loss .5

□ tDCS could be applied as an adjuvant therapy for rehabilitation in stroke patients as it can potentially facilitate motor, cognitive and language.

- Chronic
- Sub- acute

Motor stroke and tDCS

Combination of tDCS with other therapies \rightarrow synergistic effects

- Virtual reality training .A
- Robot-assisted training .B
- Constraint-induced movement therapy .C

A

Pain stroke and tDCS

- Thalamic syndrome
 - 8-35% •
- Spinothalamic tract, thalamus, thalamocortical tract

Rahimi Fatemeh, PT, PhD

Spinal Cord Injury

- Traumatic or non-traumatic event that altered sensory, motor, or autonomic function
 - affects a patient's physical, psychological, and social well-being \succ

Spinal Cord Injury (upper extremity)

tDCS protocol:

- Single session $\, \, \bigstar \,$
- $2 \text{ mA or } 1 \text{ mA} \Leftrightarrow$
- Anodal tDCS 🔹
 - 30 minutes \clubsuit
 - M1 🏼 🋠

Functional tests:

- Nine-hole peg test \clubsuit
 - Pinch force \clubsuit
- ensory perception $\, \, \bigstar \,$
 - Grasp 🔹

Spinal Cord Injury (lower extremity)

:tDCS protocol

Anodal tDCS \Box

Vertex 🛛

sessions 36 \Box

During gait training with a robotic gait orthosis \Box

:Functional tests

lower extremity motor score \Box

Gait 🛛

Imbalance

Knee osteoarthritis

- Prevalent and costly health
 - M1 anodal tDCS
 - 2mA •
 - 20 minutes •
 - Twice weekly
 - 8 weeks

Any Question? Thank you