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Abstract
Background: Changes in cell metabolism are a well-known 
feature of some cancers, and this may be involved in the eti-
ology of tumor formation and progression, as well as tumor 
heterogeneity. These changes may affect fatty acid metabo-
lism and glycolysis and are required to provide the increase 
in energy necessary for the high rate of proliferation of can-
cer cells. Gastrointestinal cancers remain a difficult-to-treat 
cancer, particularly as they are usually diagnosed at a late 
stage of disease and are associated with poor outcomes. 
Summary: Recently, the changes in the metabolic pathways, 
including the expression of the rate-limiting enzymes in-
volved, have been considered to be a potential target for 
therapy for gastrointestinal tumors. Key Message: A combi-
nation of routine chemotherapy drugs with metabolic inhib-
itors may improve the effectiveness of treatment.

© 2021 The Author(s).
Published by S. Karger AG, Basel

Introduction

Cancer cells are irregular cells with unlimited prolif-
eration, transformation, and migration that lead to more 
energy requirements by unusual metabolic pathways that 
are more active than normal cells. The interaction be-
tween metabolic pathways and solid tumor growth has 
been investigated in several studies [1, 2]. The cellular 
composition of solid tumors is often heterogeneous and 
comprises different cell types within the tumor microen-
vironment [3]. Hence, solid tumors display different met-
abolic landscapes due to some intrinsic factors and also 
signaling to rise by the microenvironment [4]. Impor-
tantly, different metabolic pathways in tumor cells and 
stroma tissues around tumor cells support the develop-
ment of a metabolic symbiosis between tumor cells and 
the tumor microenvironment [5]. Gastrointestinal (GI) 
malignancies are an important global public health prob-
lem. Patients with GI cancers are often diagnosed at a late 
stage and consequently have a poor prognosis outcome 
[6]. The mechanisms of tumor progression in GI tumors 
are a major focus of research. Regulatory changes of the 
metabolic network in tumor cells may help to explain the 
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mechanisms behind the tumor therapeutic failures and 
determine clinical outcomes. In this review, we summa-
rize the metabolic alterations and their effects on a differ-
ent aspect of cancer biology in GI malignancies.

Tumor Cell Energy and Metabolism

A common and important feature of malignant tumor 
cells is the deregulation of some metabolic pathways that 
are involved in energy production [7]. High energy de-
mand and synthesis of macromolecules are due to the 
high proliferative rates of cancer cells [8]. Therefore, tu-
mor cells need to reprogram their metabolic pathways to 
enable energy production and sustain their growth rate 
[8, 9].

Glucose Metabolism
The Warburg effect is the increased conversion of glu-

cose to lactate in relation to low oxidative profile due to 
aerobic glycolysis in tumor cells [10]. The Warburg effect 
is a metabolic feature in most tumor cells and gives sev-
eral benefits to the tumor cells that include increased sur-
vival ability during changes in tissue oxygen levels; more-
over, some mediators produced in glycolysis are used in 
other pathways like nucleotide and lipid biosynthesis and 
acidify the tumor microenvironment that affects the ac-
tivity of other cells like immune cells [11, 12]. Moreover, 
hypoxia is a common feature of malignant tumors and 
contributes to cancer progression and drug resistance 
[13]. Hypoxic conditions activate the hypoxia-inducible 
factor 1α (HIF-1α) to stimulate metabolic reprogram-
ming and induce glycolytic activity [12, 13]. HIF-1 and 
c-Myc as transcriptional factors target most glycolic en-
zyme genes such as hexokinases (HK), pyruvate kinase 
(PK), and pyruvate dehydrogenase kinase (PDK). Several 
studies have shown that the significance of HIF-1α- and 
c-Myc-positive expression is associated with poor prog-
nostic outcomes in patients with GI cancers such as pan-
creatic adenocarcinoma (PADC) [14] and gastric cancer 
(GC) [15].

HK, the first enzyme in the glycolytic pathway, phos-
phorylates glucose to glucose 6 phosphates and retains 
glucose in cells. HK has 4 isoenzymes (HK1–4). HK2 is a 
major isoform and unregulated in many tumor types 
compared with normal tissue [16]. Several studies have 
demonstrated that high expression of HK2 is associated 
with poor prognosis in different GI cancers such as GC 
and HCC [17, 18]. Increased HK2 expression was reported 
to be associated with the advanced stage of HCC [18, 19]. 

A previous study indicated that the use of 3-bromopyru-
vate inhibited HK2 expression and reduced the prolifera-
tion of colorectal cancer (CRC) cell lines when combined 
with daunorubicin [20].

Pyruvate, a final product of the glycolytic pathway, is 
generated from phosphoenolpyruvate by PK. Four iso-
forms of PK have been identified, but the M2 isoform of 
PK is essential for aerobic glycolysis and expressed in can-
cer cells, adult stem cells, and embryonic cells [21, 22]. 
PKM2 as a kinase leads to phosphorylation of histone H3 
in the nucleus and contributes to tumor genesis [23]. 
Also, PKM has a role in the biosynthesis of nucleic acid 
tumor progression [24]. PKM2 overexpression is related 
to poor outcomes in ESCC and GC [25, 26]. Also, upreg-
ulation of PKM2 reduces the levels of electron transport 
chain complex proteins and so contributes to glycolysis 
and can damage the normal function of mitochondria 
[27]. PKM2 is a potential target molecule for cancer treat-
ment and suggests that a combination of PKM2 inhibi-
tors with other targeted therapies like gefitinib can in-
crease the potential of cancer treatment. Shikonin, a 
natural naphthoquinone, significantly inhibits the gly-
colytic rate through PK inhibition. Many studies have 
demonstrated that shikonin can decrease multiple types 
of cancers, including esophageal and hepatocellular 
cancer [28, 29].

Several investigations have reported an association be-
tween PDK positivity and prognosis in GI cancer. PDK 
inhibits pyruvate dehydrogenase activity by phosphory-
lation and increases the generation of pyruvate to lactic 
acid. PDK has 4 isoforms, and their expression is organ 
specific. Overexpression of PDK1 was shown in GC and 
related to poor survival [30]. Moreover, an increase in the 
expression of PDK3 was detected in CRC [31]. Dichloro-
acetic acid, a PDK-1 inhibitor, decreased lactate genera-
tion and promoted responsiveness to 5-FU in CRC cell 
lines [32]. Treatment of HCC cell lines with dichloroace-
tic acid reduces cell proliferation and also decreases 
sorafenib resistance [33].

Phosphofructo-1-kinase (PFK1) is a key regulatory en-
zyme in the glycolytic pathway that converts glucose 6 
phosphates into glucose 1–6 bisphosphate and adenosine 
diphosphate. Liver type (PFK-L), muscle type (PFK-M), 
and platelet type (PFK-P) are 3 important isoforms of PFK 
in humans [34, 35]. PFK1 activity is induced in response to 
proliferation signaling that increases glycolysis in cancer 
cells [35]. PFK-L and PFK-P are the main isoenzymes that 
are elevated in tumor cells [36, 37]. In addition, PFK1 activ-
ity is increased by HIF-1α in malignancies [38]. Because of 
the increased dependence of cancer cells on the glycolytic 
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pathway, PFK can be an effective treatment option of can-
cer. Zhu et al. [39] have shown that 3-(3-pyridinyl)-1-(4-
pyridinyl)-2-propen-1-one as a PFK inhibitor induces 
apoptosis and inhibits invasion of GC cells.

Glucose transporters (Glut) are membrane proteins 
responsible for the uptake of glucose into the cells across 
the plasma membrane and are different for a specific tis-
sue. Glut1–4 isoforms are the most common studies in 
solid neoplasms. Different studies indicated that Glut1 is 
overexpressed in CRC and is associated with poor sur-
vival in patients [40, 41]. In GC, the analyzed samples 
showed that Glut1 and Glut3 are increased, and the ex-
pression of Glut3 was associated with higher stage and 
poor outcomes [42]. Other studies have demonstrated 
that Glut1 is upregulated in pancreatic cancer and esoph-
ageal adenocarcinoma, and the expression level was as-
sociated with clinicopathological features and prognosis 
[43, 44]. Glut1 positivity was related to rectal cancer tu-
mor grade and maybe a suitable prognostic biomarker for 

evaluation to chemoradiotherapy. Furthermore, c-Myc 
and HIF-1α increase the expression of Glut1 and 3 to in-
crease glucose uptake in cancer cells and induce tumor 
cell growth [45, 46].

Different studies have shown that glycolytic enzyme 
genes like HK2, PKM2, PDK1, and Glut are targeted by 
transcriptional factors such as HIF-1α and C-Myc, so 
more investigations about the molecular mechanisms of 
these genes may provide insights about the tumor biology 
and treatment. In Figure 1, we show a schematic picture 
of the glycolytic pathway and involved molecules in the 
Warburg effect in the tumor cells. Also, we summarize 
the most important regulatory enzymes and molecules in 
the glycolytic pathway and their inhibitors against GI ma-
lignancies in Table 1.

Lipid Metabolism
Lipids, a highly different class of biological mole-

cules, are necessary components in cell function and 
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Fig. 1. Diagram showing the expression of 
glycolytic enzymes and GluTs in tumor 
and normal cells and also small-molecule 
inhibitors in the Warburg effect for cancer 
therapy. In normal cells, pyruvate is usu-
ally transported to the mitochondria for 
TCA and oxidative phosphorylation, but in 
tumor cells, Warburg effect increases lac-
tate by converting most of pyruvate to lac-
tate. TCA, tricarboxylic acid.
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have different biological roles such as a structural role in 
a biological membrane, metabolism, and energy storage 
and also as signaling molecules to regulate many cellular 
activities. The regulation of lipid metabolisms such as lip-
id biosynthesis, lipid uptake, and lipid hydrolysis is need-
ed for cellular hemostasis [47]. During tumor progres-
sion, there is a change in the tumor microenvironment, 
around the tumor cells, in which there is a change in lip-
id metabolic pathways in taking energy that contributes 
to the rapid cell proliferation and increases survival and 
migration of cancer cells. The role of lipid metabolism 
variations in tumor progression has been clearly shown 
[48].

Obesity is a risk factor for several cancer types. Obe-
sity is defined as excess visceral fat, and obesity can be 
considered as a chronic disorder. Excess visceral depots 
of adipose tissue in obesity may cause alterations in the 
lipid metabolism in the tumor cell microenvironment 
contributing to tumor cell proliferation and migration 
[49, 50]. The release of fatty acids (FAs) and proinflam-
matory cytokines around the tumor cells may be caused 
by adipocytes, and this may support tumor cell progres-
sion [49]. Moreover, there is excessive production of ara-
chidonic acid by adipose tissues in obesity, and this FA is 
a key precursor lipid for the production of proinflamma-

tory molecules like leukotrienes, and prostaglandins pro-
mote tumor cell development [51, 52]. Studies have dem-
onstrated that obesity is associated with GI malignancies 
such as CRC [53], liver [54], and PADC [55].

De novo FA biosynthesis occurs predominantly in the 
liver and adipose tissue. ATP-citrate lyase generates ace-
tyl-CoA from citrate provided by the tricarboxylic acid 
cycle. Production of acetyl-CoA is the essential step of FA 
biosynthesis. Activation of acetyl-CoA to malonyl-CoA 
and coupled acetyl and malonyl to the acyl-carrier pro-
tein are needed to produce palmitic acid and other kinds 
of FAs. De novo FA synthesis has been associated with 
tumor cell proliferation and metastasis in different can-
cers [56]. It has been demonstrated that ATP-citrate lyase 
is needed for cell transformation in vitro and for tumor 
genesis in vivo [57]. ATP-citrate lyase is a bridge between 
the glycolytic cascades and starting lipid metabolism. 
Likewise, connections between glucose metabolisms with 
lipogenesis through ATP-citrate lyase enable tumor cells 
to grow, and it could offer a novel therapeutic target. Qian 
et al. [58] have shown that high ATP-citrate lyase expres-
sion was associated with advanced stages of cancer and 
lymph node metastasis in patients with GC, and patients 
with low expression of ATP-citrate lyase had better sur-
vival time. Furthermore, Zhou et al. [59] have shown that 

Table 1. Summary of regulatory enzymes related to the glucose and lipid metabolic pathway and some inhibitors against GI malignancies

Metabolic pathway Related enzymes and 
molecules

Molecule function Some inhibitors in cancer 
research

Glucose metabolism HK Phosphorylates glucose to glucose 6 phosphates and retains glucose in cells 3-Bromopyruvate [20]

PK Catalyzes the reaction that produces pyruvate from phosphoenolpyruvate Shikonin [28, 29]

PDK Inactivates pyruvate dehydrogenase by phosphorylation and increases the 
generation of pyruvate to lactic acid

DCA [32, 33]

PFK1 Converts glucose 6 phosphate to glucose 1–6 bisphosphate and ADP 3PO [39]

Glucose transporters Membrane proteins responsible for the uptake of glucose into the cells 
across the plasma membrane

Not reported

Lipid metabolism ATP-citrate lyase Generates acetyl-CoA from citrate provided by tricarboxylic acid Hydroxycitric acid [60, 61]

ACC Catalyzes the formation of malonyl-CoA from acetyl-CoA in the fatty acid 
synthesis pathway

TOFA [65]

FASC Generation of long-chain fatty acids from acetyl-coenzyme A C75, cerulenin, orlistat [73, 
74]

HMGCR Conversion of HMG-CoA to mevalonate in cholesterol biosynthesis 
pathway

Statins [79, 80]

HK, hexokinases; PK, pyruvate kinase; PDK, pyruvate dehydrogenase kinase; DCA, dichloroacetic acid; PFK1, phosphofructo-1-kinase; 3PO, 
3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; ACC, acetyl-CoA carboxylase; TOFA, 5-(tetradecyloxy)-2-furoic acid; FASC, fatty acid synthase complex; 
HMGCR, hydroxy-3-methylglutaryl-CoA reductase.
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the expression of ATP-citrate lyase was upregulated in 
CRC in comparison with normal tissues, and it was cor-
related with chemoresistance in patients. Also, they found 
that targeting ATP-citrate lyase can improve the thera-
peutic effects and increase the survival outcomes. Several 
studies have shown that hydroxycitric acid is able to sup-
press CRC, suppressed growth, migration, and invasion 
by ATP-citrate lyase inhibition [60, 61]. One of the other 
important enzymes in FA biosynthesis is acetyl-CoA car-
boxylase (ACC). ACC is a biotin-dependent enzyme that 
catalyzes the formation of malonyl-CoA in the FA syn-
thesis pathway [62]. Fang et al. [63] have reported a sig-
nificant relationship between high expressions of ACC 
with clinicopathological parameters in GC and have the 
potential to introduce as a prognostic factor. In another 
investigation, Calvisi et al. [64] have detected the upregu-
lation of active ACC in HCC. Moreover, several studies 
have described that hypoxia conditions around the tu-
mor cells induce the expression of enzymes related to 
FA biosynthesis like ACC. These findings suggest that 
ACC can be a molecular target for GI cancer therapy. 
5-(Tetradecyloxy)-2-furoic acid as an ACC inhibitor in-
duces apoptosis and suppression of human pancreatic 
cancer cells [65].

Fatty acid synthase complex (FASC) is a crucial en-
zyme in the lipogenic pathway and the generation of long-
chain FAs from acetyl-coenzyme A (CoA) and malonyl-
CoA [66]. In normal cells, FASC is strongly regulated by 
hormones, diet, and growth factors, not in malignant cells, 
because rapidly proliferating FAs can be synthesized to 
provide lipids for energy generation and membrane for-
mation [66]. Overexpression of FASC is observed in 
many cancers associated with the GI system: ESCC, GC, 
HCC, CRC, and PADC [67–69]. Different studies dem-
onstrated that elevated expression of FASC has been as-
sociated with poor prognosis. Some compounds are iden-
tified to inhibit FASC such as cerulenin and C75 which 
have shown significant anticancer activity [70]. Prizer et 
al. [71] have shown that C75 has decreased breast tumors 
in a xenograft breast cancer model in mice. In another 
study, Shiragami et al. [72] have found that cerulenin was 
able to induce apoptosis and cause cytotoxicity in murine 
CRC cells and in a murine xenograft model; likewise, they 
have indicated that cerulenin was able to reduce human 
CRC cell line HCT116 through increased cytotoxicity of 
cancer cells in vitro. Herein, they have shown that a com-
bination of cerulenin with oxaliplatin has synergistic cy-
totoxicity effects and can reduce the dosage of oxaliplatin 
in the treatment of human CRC [73]. Moreover, similar 
findings have been demonstrated that C75 decreases the 

chemosensitivity of GC cells to oxaliplatin by regulating 
FASN expression [74]. These findings suggest that FASC 
inhibitors have the potential to be a target for cancer ther-
apy in the future.

Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) 
is the rate-limiting enzyme in the cholesterol biosynthesis 
pathway and is responsible for the conversion of HMG-
CoA to mevalonate [75]. Some studies have demonstrat-
ed that the HMGCR is higher in neoplastic tissues in GI 
cancers [76, 77]. Shi et al. [78] have shown that statins as 
an HMGCR are able to inhibit ESCC cells in vitro and in 
vivo. Zhong et al. [79] have found that overexpression of 
HMGCR stimulated the growth, invasion, and colony 
formation of ESCC cells while downregulation of 
HMGCR decreased the tumorigenicity of ESCC cells. 
Transcription factor C-Myc is the main oncogene that 
induces the expression of HMGCR in tumor cells [78]. 
These outcomes highlight the potential of the cholesterol 
pathway as a target for increasing cancer therapy. The 
targeting of metabolic enzymes related to lipid metabo-
lism is summarized in Table 1.

Although most tumors take up glucose to support 
their energy and biosynthetic requirements [80], some 
tumors are dependent on lipid β-oxidation to take en-
ergy. For example, prostate tumors showed to increase 
uptake of FAs and induce the β-oxidation enzymes [81, 82]. 
β-Oxidation has also been indicated to provide ATP pro-
duction and resistance to oxidative stress by producing 
the substrate to generate NADPH and glutathione to 

Lipid metabolism in GI tumor cells
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Fig. 2. Main metabolic pathways related to lipid metabolism in 
GI malignancies. GI, gastrointestinal; ACC, acetyl-CoA carbox-
ylase; FASC, fatty acid synthase complex; HMGCR, hydroxyl 
methylglutaryl-CoA reductase.
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reduce oxidative stress [83]. There are few investiga-
tions about the relationship between β-oxidation pathway 
activation and GI tumor development and metastasis. 
Toshima et al. [84] have shown HIF-1α activated in 
hypoxia condition increases mitochondrial β-oxidation 
and cell survival in HCC. More studies are needed to 
explore the β-oxidation influences in GI tumor progres-
sion. FA biosynthesis and oxidation pathway and re-
lated enzymes overexpressed in tumor cells are shown 
in Figure 2.

Conclusion

Understanding the metabolic alteration and metabo-
lism-related enzyme deregulation in GI malignancies 
opens up a new insight into the treatment of these can-
cers. Cancer cells need to have sufficient energy and met-
abolic intermediates for production of molecules to pro-
mote proliferation, migration, and metastasis. Metabolic 
reprogramming such as the Warburg effect and lipogen-
esis and their critical enzymes that take place in tumor 
cells contribute to a condition for tumor survival and 
growth, so metabolic signaling pathways have become 

appropriate targets for therapeutic intervention in malig-
nancies. GI tumors are progressive with poor outcomes, 
and therefore more investigation about the difference be-
tween metabolic pathways between GI tumors and nor-
mal cells and introduction of the effective agents to in-
hibit metabolism-related enzyme can reduce tumor 
growth and improve patient outcomes.
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